
数据结构（C语言版）（第2版）

线索二叉树

主讲教师：汪红松

树和二叉树

教 学 内 容

1

2

3

4

5

6

树和二叉树的定义

二叉树的性质和存储结构

遍历二叉树

线索二叉树

树和森林

哈夫曼树及其应用

Contents

普通二叉树只能找到结点的左右孩子信息，而该
结点的直接前驱和直接后继只能在遍历过程中获得。

若将遍历后对应的有关前驱和后继预存起来，则
从第一个结点开始就能很快“顺藤摸瓜”而遍历整个
树。

例如中序遍历结果：B D C E A F H G，实际上
已将二叉树转为线性排列，显然具有唯一前驱
和唯一后继！

一、线索化二叉树

如何保存这类信息？

一、线索化二叉树

两种解决
方法

增加两个域：
fwd和bwd；

利用空链域
（n+1个空链域）

为了避免混淆，增加两个标志域

lchild LTag data RTag rchild

一、线索化二叉树

1 ） 若结点有左子树，则lchild指向其左孩子；
否则， lchild指向其直接前驱(即线索)；

2 ）若结点有右子树，则rchild指向其右孩子；
否则， rchild指向其直接后继(即线索) 。

1.术语

线索化
对二叉树以某种次
序遍历使其变为线
索二叉树的过程

线索二叉树
加上线索的二叉
树（图形式样）

线索链表
加上线索二叉链表

线索
指向结点前驱和

后继的指针

struct ThrNode
{
 TElemType data;
 struct BiThrNode *lchild, *rchild;
 int ltag, rtag;
};

结点结构

一、线索化二叉树

A

B

C

D

E

 A

 B D

 C E

T

先序序列：ABCDE

0 0

0 01 1

1 1 ^1 1

 lchild LTag data RTag rchild

2.先序线索二叉树一、线索化二叉树

A

B

C

D

E

 A

 B D

 C E

T

中序序列：BCAED

0 0

0 01 1

1 1

^

1 1

^

 lchild LTag data RTag rchild

3.中序线索二叉树一、线索化二叉树

 lchild LTag data RTag rchild

A

B

C

D

E

 A

 B D

 C E

T

后序序列：CBEDA

0 0

0 01 1

1 11 1^

4.后序线索二叉树一、线索化二叉树

画出以下二叉树对应的中序线索二叉树。

A

B C

GE

I

D

H

F

root

悬空？

悬空？

该二叉树中序遍历结果为: H, D, I, B, E, A, F, C, G

为避免悬空
态，应增设
一个头结点

练习

为中序线索二叉链表增加头结点。

0 0A

0 0C0 0B

1 1E 1 1F 1 1G0 0D

1 1I1 1H

注：此图中序遍历结果为: H, D, I, B, E, A, F, C, G

0 --root 0

练习

二、构造中序线索二叉链表

 建立线索链表，实质上就是将二叉链表中的空指

针改为指向前驱或后继的线索，而前驱或后继的信息

只有在遍历该二叉树时才能得到。

建立二叉链表

遍历二叉树，将空指针改为线索

构造线索二叉树

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧

∧

∧ ∧ ∧ ∧

0 0

0 0 0 0

000000

0 0∧ ∧

中序线索链表
的建立过程。

已经建立起二叉链表
。

中序序列：D G B A E C F
p

1

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧

∧

∧ ∧ ∧ ∧

0 0

0 0 0 0

000000

0 0∧ ∧

中序线索链表
的建立过程。

中序遍历二叉链表
p为正在访问的结点
pre为刚访问的结点
。

pre

1

p

1 中序序列：D G B A E C F

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧

∧

∧ ∧ ∧ ∧

0 0

0 0 0 0

000000

0 0∧

中序线索链表
的建立过程。

中序遍历二叉链表
p为正在访问的结点
pre为刚访问的结点
。

pre

1

1

p

1 中序序列：D G B A E C F

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧

∧

∧ ∧ ∧ ∧

0 0

0 0 0 0

000000

0 0

中序线索链表
的建立过程。

中序遍历二叉链表
p为正在访问的结点
pre为刚访问的结点
。

pre

1

1

p

1

1

中序序列：D G B A E C F

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧ ∧ ∧ ∧ ∧

0 0

0 0 0 0

000000

0 0

中序线索链表
的建立过程。

中序遍历二叉链表
p为正在访问的结点
pre为刚访问的结点
。pre

1

1
p

1

1

1

中序序列：D G B A E C F

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧ ∧ ∧ ∧

0 0

0 0 0 0

000000

0 0

中序线索链表
的建立过程。

中序遍历二叉链表
p为正在访问的结点
pre为刚访问的结点
。

pre

1

1

p

1

1

1 1

中序序列：D G B A E C F

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧ ∧ ∧

0 0

0 0 0 0

000000

0 0

中序线索链表
的建立过程。

中序遍历二叉链表
p为正在访问的结点
pre为刚访问的结点
。

pre

1

1
p

1

1

1 1 1

中序序列：D G B A E C F

二、构造中序线索二叉链表

A

头指针

B C

D E F

G

∧ ∧

0 0

0 0 0 0

000000

0 0

中序线索链表
的建立过程。

中序遍历二叉链表
p为正在访问的结点
pre为刚访问的结点
。

pre

1

1 1

1

1 1 1 1

中序序列：D G B A E C F

二、构造中序线索二叉链表

在遍历过程中，访问当前结点root的操作为：

（1）如果root的左、右指针域为空，则将相应标志置1；
（2）若root的左指针域为空，则令其指向它的前驱，这
需要设指针pre始终指向刚刚访问过的结点，显然pre的初值为

NULL；若pre的右指针域为空，则令其指向它的后继，即当前

访问的结点root;
（3）令pre指向刚刚访问过的结点root。

1.中序线索链表的建立

二、构造中序线索二叉链表

（1）建立二叉链表，将每个结点的左右标志置为0；
（2）遍历二叉链表，建立线索；

①如果二叉链表root为空，则空操作返回；

②对root的左子树建立线索；

③对根结点root建立线索；

 Ⅰ 若root没有左孩子，则为root加上前驱线索;
 Ⅱ若root没有右孩子，则将root右标志置为1；
 Ⅲ 若结点pre右标志为1，则为pre加上后继线索；

 Ⅳ 令pre指向刚刚访问的结点root；
 ④对root的右子树建立线索。

2.中序线索链表的建立

三、遍历线索二叉树

算法思想：
（1）从根结点出发沿左指针向下，到达最左下结点*p,

它是中序的第一个结点，访问*p。
（2）反复查找当前结点*p的后继结点,直至遍历结束；
 若p->RTag为1，则其后继结点的指针即为p->rchild ;
 否则，其后继为结点*p的右子树的最左下结点;
 访问找到这个后继结点。

1.中序遍历线索二叉树

三、遍历线索二叉树

void InOrderTraverse Thr (BiThrTree T)
{ p=T-> lchild; //p 指向根结点

while(p!=T){ //空树或逼历结束时,p= =T
 while(p-> LTag==0) p=p-> lchild; //沿左孩子向下
 cout<<p-> data; //访问其左子树为空的结点
 while (p-> RTag==1&&p-> rchild!=T) {

p=p-> rchild;cout<<p-> data; //沿右线索访问后继结点
 }
 p=p-> rchild;

 }
}

1.中序遍历线索二叉树

小结

1. 线索二叉树的概念

2. 构造线索二叉树的方法

3. 遍历线索二叉树的算法步骤

